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ABSTRACT
Stereo matching has been one of the most active areas in com-

puter vision for decades. Many methods, ranging from simi-

larity measures to local or global matching cost optimization

algorithms, have been proposed. In this paper, we propose a

novel similarity measure under Riemannian metric. A gener-

alized structure tensor is applied to describe a point and the

similarity is measured by the distance between the associated

tensors. Since the structure tensor lies in a Riemannian man-

ifold, the distance between structure tensors is the geodesic

distance on Riemannian manifold. We will show that our sim-

ilarity measure provides an efficient way to fuse different fea-

tures and it is independent of illumination change and window

scaling. Experiments on standard dataset prove that our sim-

ilarity measure outperforms many traditional measures such

as SSD, SAD and normalized cross-correlation (NCC).

Index Terms— Stereo matching, similarity measure,

structure tensor, Riemannian metric

1. INTRODUCTION

Stereo matching has been one of the most active areas in com-

puter vision for decades. The task of stereo matching is to

find the point correspondence between two images taken from

different views of the same scene. When the camera geom-

etry is known, we usually rectify the images so that corre-

spondence points are in the same scanline in both images and

the correspondence problem is reduced to one dimensional

search. Most stereo matching methods usually consist of four

steps: (1) image preprocessing; (2) similarity measure selec-

tion; (3) local or global matching cost optimization; and (4)

disparity postprocessing. In recent years, a large number of

methods ranging from similarity measures to local or global

optimization algorithms have been proposed. For a compre-

hensive discussion on stereo matching method, we refer read-

ers to [1]. In this paper, our interest mainly focuses on simi-

larity measure since it is the foundation of the stereo match-

ing. The similarity measures can be classified into pixel-based

method and window-based method. In practice, we usually
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choose window-based method which uses a window centering

at the point of interest to describe it. The popular window-

based similarity measures in stereo matching include sum-

of-square-differences (SSD) [2], sum-of-absolute-difference

(SAD) [3] and normalized cross correlation (NCC) [4]. The

SAD and SSD assume brightness constancy for correspond-

ing pixels while the NNC can compensate differences in gain

and bias. All of these methods are mostly adopted based only

on image intensity. When fusing more features, the common

strategy is just computing SAD, SSD and NNC on each fea-

ture respectively and summing them up.

In this paper, we propose a novel similarity measure for

stereo matching. First, we adopt the structure tensor [5] to

describe a point in the image, which is generalized to fuse

different features, e.g. image intensity and derivatives. After

that, we can measure the similarity by the distance between

pair-wise structure tensors. The structure tensors do not lie in

a vector space, otherwise, they form a positive definite matrix

space, which is a Riemannian manifold. So we can calculate

the distance under Riemannian metric for the measurement of

similarity in stereo matching. The similar solution has been

applied to object tracking [6] and human detection [7]. As we

know, there is little work related with the method mentioned

above in stereo matching area.

The remainder of this paper is organized as follows. In

Section 2, we introduce the proposed similarity measure for

stereo matching in detail, discuss their good properties and

give an application example in stereo matching. The experi-

ment results are demonstrated in Section 3. In section 4, we

draw a conclusion and point out the future works.

2. OUR SIMILARITY MEASURE FOR STEREO
MATCHING

Similarity measure for stereo matching generally consists of

two aspects: (1) point descriptor and (2) similarity measure-

ment. In the following, we will discuss our similarity measure

for stereo matching from these two aspects respectively. Then

we summarize its good properties for stereo matching. After

that, we will combine the proposed similarity measure with

WTA (winner-take-all) strategy to derive a prototype stereo

matching algorithm as its application.
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2.1. Structure Tensor Descriptor

We usually describe a point in an image by the intensity, color,

derivatives and even higher order derivatives. The most pop-

ular window-based similarity measures in stereo matching in-

clude SAD, SSD and NNC. Nevertheless, all of these simi-

larity measures describe a point by the raw region within the

window.

We adopt structure tensor [5] [8] of a region for alterna-

tive. Structure tensor was usually used for low-level feature

analysis and gained great success in corner detection [5], op-

tical flow estimation [8] and so on. Given a pixel I(x, y),
structure tensor is based on the window W centering at the

pixel. The naive structure tensor is represented as:

Tn =
(

G ∗ I2
x G ∗ IxIy

G ∗ IxIy G ∗ I2
y

)
, (1)

where Ix and Iy denote the partial derivatives in x and y,

respectively. G is the Gaussian smooth filter as:

G =
1

2πσ2
exp (−x2 + y2

σ2
), (2)

where σ is the standard deviation. The Structure tensor rep-

resents the local orientation by its eigenvectors and eigenval-

ues. For stereo matching application, image intensity feature

is indispensable. So we define a generalized structure tensor

which fuses both image intensity and derivatives as follows:

Tn = G ∗ ffT

=

⎛
⎝ G ∗ I2 G ∗ IIx G ∗ IIy

G ∗ IxI G ∗ I2
x G ∗ IxIy

G ∗ IyI G ∗ IyIx G ∗ I2
y

⎞
⎠ , (3)

where f = (I, Ix, Iy), I is intensity, Ix and Iy are partial

derivatives with respect to x and y.

2.2. Distance between Structure Tensors

It is usually use the distance between point descriptors for the

measurement of similarity. For instance, SSD can been seen

as Frobenius norm while SAD as l1 norm, and the NCC is

the angle between two vectors. However, the structure tensor

does not lie in a vector space since the structure tensor space

is not closed after multiplying a negative scalar. In order to

clarify the distance between structure tensors, we will first

introduce the Riemannian geometry [9] in brief.

A manifold M is a topological space which is locally

homeomorphism to a Euclidean space. The derivatives at

point X lie in a vector space TX , called tangent space.

A Riemannian manifold is a differential manifold in

which each tangent space has a Riemannian metric < y, y >.

The inner product induces a norm ||y||.
The minimum length curve connecting two points on the

manifold is called the geodesic. The distance between X, Y ∈

M is the length of the geodesic. let y ∈ TX , there exist an

exponential map,expX : TX �→ M . In general, the exponen-

tial map is one to one in a neighborhood of X and maps the y

to the point reached by the geodesic. The inverse map, called

logarithm map, logX : M �→ TX , maps the Y to a tangent

vector with smallest norm. So we can take this smallest norm

for measuring the distance between X and Y :

d(X, Y )2 = d(X, expX(y))2 = ||y||2X =< y, y >X . (4)

The structure tensor, which is symmetric positive definite

matrix, forms a Riemannian manifold. According to [10], we

define a Riemannian metric like that:

< y, z >X= tr(X−1/2yX−1zX−1/2). (5)

The exponential map associated to the above Riemannian

metric is

expX(y) = X1/2 exp(X−1/2yX−1/2)X1/2. (6)

By Eq.(6) we can obtain the logarithm map

y = logX(Y ) = X1/2 log(X−1/2Y X−1/2)X1/2. (7)

Submit Eq.(7) to Eq.(4)

d2(X, Y ) = ||y||2X =< y, y >X

=< logX(Y ), logX(Y ) >X

= tr(log2(X−1/2Y X−1/2)). (8)

It is just the distance between structure tensors. Furthermore,

Eq.(8) is equivalent to

d(X, Y ) =

√√√√ d∑
k=1

log2 λk(X, Y ), (9)

where λk(X, Y ) are the generalized eigenvalues of X and Y
and this problem can been solved by SVD decomposition.

2.3. Properties

The proposed similarity measure has a number of good prop-

erties for stereo matching.

First of all, the proposed similarity measure provides an

effective way to fuse different features. As we have seen

above, the structure tensor descriptor can be generated by fea-

ture vector f . For example, the feature vector f can also be

defined as

f =
[
I |Ix| |Iy|

√
I2
x + I2

y |Ixx| |Iyy|
]
, (10)

where Ixx and Iyy are second order partial derivatives of in-

tensity with respect to x and y, and
√

I2
x + I2

y are the mag-

nitude of the gradient. In our experiments, we selected the
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feature vector as f = (I, Ix, Iy) to compromise between ac-

curacy and computation efficiency.

The second advantage of our similarity measure is scale

invariant since the order of structure tensor descriptor does

not depend on the window size, otherwise, it is determined

by the dimension of the feature vector. This property enables

comparing two windows without being restricted to the same

window size. It can help us to easily design an asymmetric

window size matching algorithm for stereo matching.

Thirdly, our similarity is invariant to varying illumina-

tion since the structure tensor descriptor contains the partial

derivatives which can compensate largely the illumination

change. When the two images taken under different light

conditions, or the cameras which taking the images have

chromatic aberration, it contributes a lot to overcome these

difficulties.

2.4. Algorithm

Here we will show that how to combine our similarity mea-

sure with cost optimization algorithm. The proposed simi-

larity can be adopted in both local and global cost optimiza-

tion algorithms such as graph cut [11]. Taking into account

of simplicity, We choose WTA local optimization algorithm

for example. The algorithm is summarized in Table.1. It also

Table 1. The flow chart of the stereo matching algorithm

which combines the proposed similarity measure with WTA.

Algorithm
Input: Ir and It: reference image and target image

dmin,dmax: disparity range

Wsize: search window size

σ: gaussian standard deviation

Initialize: convolute Ir and It with gaussian kernel to

generate I ′r and I ′t
For each pixel p1 in I ′r

For d ∈ [dmin, dmax], there is a p2 in I ′t
-Compute generalized structure tensors T1 and T2

with respect to p1 and p2

-Calculate dis(T1, T2) =
√∑d

k=1 log2 λk(T1, T2)
End

disparity = arg mind∈[dmin,dmax] dis
End

Output: Disparity image

provides a framework to compare our similarity measure with

SAD, SSD and NCC measures in an unbiased way.

3. EXPERIMENTAL RESULTS

We performed the experiments on widely-used Middlebury

data sets. The data sets consist of dozens of data, each of

which has 9 images and ground-truth disparities.

To evaluate our results, we introduce a quality metric

named percentage of bad matching pixels similar with that in

[1], but without considering different kinds of regions:

B =
1
N

∑
(x,y)

(|dC(x, y) − dT (x, y)| > δd), (11)

where δd is a disparity error tolerance. In our experiments,

we use δd = 1, the σ in Eq.(2) is set as 1.5 and the search

window size Wsize is 9.

To compare the proposed similarity measure with other

measures fairly, the same features are used for SAD, SSD,

NNC and our similarity measure. However, in our exper-

iments, we found that the performances of SAD, SSD and

NNC which fused intensity and partial derivatives are not al-

ways as good as those based only on intensity. Since there is

not an effective way to fuse features for these methods rather

than summing up the cost associated with each feature. This

counts for the result. So we list the results of SAD, SSD and

NNC based only on intensity and on intensity and derivatives

in Table.2 to compare with our similarity measure. Figure.1

demonstrates the results on ”Sawtooth” and ”Teddy” data.

From Table.2, we can see that the percentage of bad

matching of our similarity measure is lower than other mea-

sures on this data set. In Figure.1, the red marks in disparity

image indicate the pixels which are bad matching. It is ob-

vious that the count of bad matching pixels by our similarity

measure is much smaller, especially in textureless region and

disparity discontinuous region.

Table 2. Bad matching percentage of the four Similarity mea-

sures on five datas. SAD1, SSD1, NNC1 denote the measures

based only on intensity; SAD2, SSD2, NNC2 denote the mea-

sures based on intensity and derivatives.

Data Sawtooth Venus tsukuba Cones Teddy

SAD1 0.0066 0.0124 0.0207 0.0284 0.0421

SAD2 0.0071 0.0056 0.0277 0.0269 0.0165

SSD1 0.0076 0.0103 0.0205 0.0231 0.0316

SSD2 0.0096 0.0060 0.0210 0.0258 0.0180

NNC1 0.0085 0.0047 0.0211 0.0303 0.0124

NNC2 0.0014 0.0045 0.0191 0.0296 0.0108

Ours 0.0010 0.0031 0.0182 0.0227 0.0100

4. CONCLUSIONS

In this paper, we have proposed a novel similarity measure

under Riemannian metric for stereo matching. Our similar-

ity measure has many excellent properties. The experiment

results demonstrate the advantages of our similarity measure

over traditional measures. Future work will devote to combin-

ing our similarity measure with global optimization algorithm

such as graph cut [11] to explore a high performance stereo

matching approach.
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Fig. 1. Results on ”Sawtooth” and ”Teddy”. (a)-(f) are respectively the original image, ground-truth disparity, SAD result, SSD

result, NNC result and our result of ”Sawtooth”. (g)-(l) are respectively the original image, ground-truth disparity, SAD result,

SSD result, NNC result and our result of ”Teddy”. The red crosses in disparity images label the pixels that are bad matching.
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